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The vast majority of sampling systems operate in a standard way: at each tick of a fixed-frequency master
clock a digitizer reads out a voltage that corresponds to the value of some physical quantity and translates it
into a bit pattern that is either transmitted, stored, or processed right away. Thus signal sampling at evenly
spaced time intervals is the rule: however, this is not always the case, and uneven sampling is sometimes
unavoidable. While periodic or quasiperiodic uneven sampling of a deterministic signal can reasonably be
expected to produce artifacts, it is much less obvious that the same happens with noise: here I show that this
is indeed the case only for long-memory noise processes, i.e., power-law noises 1 / f� with ��2. The resulting
artifacts are usually a nuisance although they can be eliminated with a proper processing of the signal samples,
but they could also be turned to advantage and used to encode information.
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I. INTRODUCTION

Nearly all digital signal-measuring equipment found in
laboratories throughout the world, from the humble voltme-
ter up to powerful computerized data-logging systems and
high-frequency digitizing scopes, operate with an internal
master clock that sets the pace for an analog-to-digital con-
verter that translates the electrical output of a transducer into
a bit pattern. The master clock frequency is usually held as
stable as possible and the sample intervals are fixed to a very
high degree of precision. Correspondingly, most signal-
analysis techniques are meant to be used on evenly spaced
data: this is true for the discrete Fourier transform �DFT� and
also for autoregressive �AR� or moving average �MA� mod-
eling of data �1�. However, some data happen to be unevenly
sampled: this is especially true for astronomers, who are sel-
dom so lucky as to have an uninterrupted series of clear
nights, and in general are bound to observe whatever comes
from the sky, whenever it comes, and have to search for
periodicities amid these scattered data. Indeed it was the as-
tronomical community that developed the first effective
spectral estimation techniques for unevenly sampled data �2�.

Uneven sampling has special properties: Beutler proved
rigorously �3� that in general uneven sampling is not band-
limited and later showed that a random, Poisson-distributed
set of sampling times allows perfect signal reconstruction
�4�. Earlier, Yen �5� was able to derive modified forms of the
Shannon reconstruction formula for different types of uneven
sampling, which are however much more complex than the
corresponding formula for even sampling. And indeed, ran-
domly sampled signals are not easy to analyze and many
standard methods must be abandoned, although in some
cases one can restore regular sampling using reconstruction
algorithms �6�.

Since no sampling clock is quite perfect and is normally
affected by noise �7� and by deterministic drifts �that may be
periodic�, all regular sampling should actually be regarded as
quasiregular sampling. Ignoring this may be dangerous, be-

cause it is clear that quasiregular sampling of a deterministic
signal �e.g., a sinusoidal signal� may introduce unwanted
harmonics in the DFT analysis of the sampled signal, unless
corrective measures are taken. But what happens if one
samples pure noise? Can one still produce artifacts? If this
were the case then an unrecognized quasiregular sampling of
a noisy background might become a problem since it would
produce fake signals that could be mistaken for true. In this
paper I show that this is just what happens in some cases of
colored noise, i.e., in the case of the long-memory noise
processes 1/ f� with ��2, while the correlation between
samples for noises with ��2 is insufficient to produce rep-
licas of the low-frequency peak of the noise spectrum. A
proof is given in Sec. II, while Sec. III illustrates numerical
results that confirm the theoretical analysis, and Sec. IV dis-
cusses some implications of these findings.

II. PROOF BASED ON A DFT MODEL OF THE NOISE
PROCESS

It is well known that a signal sampled N times in the time
interval �0,T� can be modeled by a sum of N exponentials
and that this is equivalent to a DFT: in other words the DFT
is a physical model of the signal �1� and we can write

fn =
1

�N
�
k=0

N−1

Fk exp�2�ink

N
� , �1�

where fn denotes the nth sample, and the fit coefficients Fk
correspond to the DFT and can be calculated from the
formula

Fk =
1

�N
�
n=0

N−1

fn exp�−
2�ink

N
� . �2�

With the usual regular sampling intervals �t, the nth sam-
pling time is tn=n�t, the total sampling time is T=N�t, and
Eq. �1� can be rewritten as follows:*Electronic address: milotti@ts.infn.it
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fn =
1

�N
�
k=0

N−1

Fk exp�2�ik
tn

T
� . �3�

If sampling is not quite regular, the sampling times tn are
replaced by tn+�tn, and Eq. �3� becomes

fn =
1

�N
�
k=0

N−1

Fk exp�2�ink

N
+ 2�i

k

N

�tn

�t
� . �4�

Now we assume a periodic sampling pattern with a period
equal to M clock ticks, so that N=mM and M �N; we also
assume at first that m is an integer �numerical simulations
show that this requirement can be relaxed and m can be real�
and we expand the relative timing shift �tn /�t as a Fourier
sum

�tn

�t
=

1
�M

�
l=0

M−1

�l exp�2�inml

N
� �5�

and in addition, we assume the relative timing shifts to be
very small, i.e., �tn /�t�1. Next we notice that k /N	1, and
then, using Eqs. �4� and �5� and after a few cumbersome but
straightforward passages, we can approximate the observed
DFT with the following formula:

Fk� 	 Fk +
2�i

N�M
�
l=0

M−1

�k − ml��lFk−ml �6�

moreover if we make the rather weak assumption that the
phase of the noise DFT in different frequency bins is uncor-
related so that 
FkFl�=0 if k� l where 
� is the usual
ensemble average, then the DFT �6� gives the following
spectrum:

Sk� =

�Fk��

2�
N

=
1

N�Fk�2 +
2�i

N�M
�
l=0

M−1

�k − ml���lFk
*Fk−ml − �l

*FkFk−ml
* �

+
4�2

N2M
�

l,l�=0

M−1

�k − ml��k − ml���l
*�l�Fk−ml

* Fk−ml��
	 Sk +

4�2

N2M
�
l=0

M−1

�k − ml�2��l�2Sk−ml �7�

The hypothesis of phase independence of the Fk’s is used in
the derivation of Eq. �7� is quite common, because it is es-
sential for noise generators such as those of Timmer and
König �8�, and is supported by the numerical results reported
in Ref. �9��.

If the noise is white, i.e., the spectral density is flat, or if
it is a 1 / f� noise with a spectral index ��2, we see from
Eq. �7� that the periodic uneven sampling amounts to the
addition of a �small� nonflat background. In fact, a 1 / f�

noise has a discrete spectrum Sk	C /k�, therefore the ob-
served spectrum �7� becomes

Sk� 	 Sk +
4�2C

N2M
�
l=0

M−1

�k − ml�2−���l�2. �8�

However, if the spectral index � is greater than 2, then the lth
harmonic of the relative time shift �tn /�t produces a peak
over the power-law background, which is just the low-
frequency noise peak, shifted to the �ml�-th frequency bin.

III. NUMERICAL SIMULATION

The analysis that leads to Eq. �7� assumes small relative
timing shifts, but in this section I report numerical simula-
tions carried out with the exact power-law noise generator
described in Refs. �9–11� that do support the analytical re-
sults also for large relative timing shifts �12�. The generator
used in the simulation runs produces power-law noise from a
superposition of random exponential pulses, and is exact in
the sense that it produces a process that is theoretically guar-
anteed to yield a range-limited power-law spectrum between
two extreme �angular� frequencies 
min and 
max. The gen-
erator takes correctly into account the correlation between
samples in colored noises, and works also with unevenly
spaced sampling times.

FIG. 1. This figure shows a noise signal produced with the gen-
erator described in Refs. �9–11�. The parameters in this specific run
are �=3, 
min=0.0001, and 
max=1, i.e., the spectrum has a power-
law region 1/ f3 that spans the angular frequency interval 
min	�
	
max. The generator produces power-law noise from a superposi-
tion of random exponential pulses, and in this run the pulse rate has
been set at n=10 pulses per unit time, so that the resulting noise
signal is Gaussian to a very high degree �9�. Time is in arbitrary
units, and the average sampling interval is �t=1 �arb. units�; the
choice of time units also sets the corresponding frequency units
used for the relaxation rates 
min and 
max. The sampling time has
been sinusoidally modulated: �tk /�t=1+0.2 sin�2�k /4�, and the
signal has been sampled 220=1048576 times. Part �a� shows the
whole signal generated in this run �time does not start from zero,
because at the beginning some samples are used for the generator
initialization and are discarded�; part �b� shows the initial 32768
valid samples. Notice that even though the sampling time modula-
tion is rather large �20%�, it is quite invisible in the zoomed figure.
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In these simulations, time is in arbitrary units, and the
average sampling interval is �t=1 arb. units; the choice of
time units also sets the corresponding frequency units used
for the relaxation rates 
min and 
max. Figure 1 shows a simu-
lated signal obtained with the noise generator for a 1/ f3

noise; in this case the generator parameters are �=3,

min=0.0001, and 
max=1, i.e., the spectrum has a power-law
region 1/ f3 that spans the frequency interval 1.6�10−5	�
	1.6�10−1, and the pulse rate has been set at n=10 pulses
per unit time, so that the resulting noise signal is Gaussian to
a very high degree �9�. In this case the sampling time has
been sinusoidally modulated: �tk /�t=1+0.2 sin�2�k /4�
�the period for uneven sampling is 4 samples�, and there are
in all 220=1048576 samples. Figure 2 shows the DFT spec-
trum of the signal of figure �1�: a comparison with the exact
theoretical spectrum of the noise generator �10,11�

S��� =
1

�
max
1− − 
min

1−��4�
max
1−F�1 − 

2
,1;

1 − 

2
;
− 
max

2

�2 �
− 
min

1−F�1 − 

2
,1;

1 − 

2
;
− 
min

2

�2 �� �9�

which has a 1/ f� power-law in the range


min	�	
max—shows that on the whole the sampled noise
process produced by the noise generator actually behaves as
predicted by theory �9–11�, except for a small peak at the
frequency of the sampling time modulation. This small peak
only shows up in this and in other runs �not shown here, but
easily reproducible �12�� with ��2, and this lends support
to the proofs of the previous sections. The spectra shown in
this and in the other figures have been partly detrended with
a Hanning window �13� �a general introduction to the need
of the detrending step can be found, e.g., in Ref. �14�; see
also the qualitative considerations in Refs. �15,16��.

A closer look at the modulation peaks yields however a
much more striking confirmation of the analytical results: in
fact the theoretical spectral density �9� of the noise generator
has a 1/ f� power-law region for 
min	�	
max, while for
�	
min it has a 1/ f2 behavior, and this means that from Eq.
�7� we expect that the correction term due to uneven sam-

FIG. 2. �Color online� �a� Spectrum of the signal shown in Fig.
1 vs the scaled angular frequency � /�S. The arrow marks the peak
from sampling time modulation at the expected position �=�N /2,
where �N=��S is the �angular� Nyquist frequency and �S is the
sampling frequency. �b� Spectrum averaged over 16 realizations of
the same noise process: the solid line shows the expected �theoret-
ical� behavior of the noise spectrum �10,11�, corrected for the inco-
herent gain of the Hanning window that has been used for trend
removal. The upward bend at high frequency in the spectrum �b� is
due to aliasing which becomes apparent after averaging, while the
upward bend at low frequency is due to the uncorrected dc compo-
nent which cannot be removed by windowing.

FIG. 3. �Color online� �a� Averaged spectrum of Fig. 2�b�
zoomed and centered on the position of the small peak �i.e., � /�S

=� /2�, with linear scales on both axes. �b� Expected behavior cal-
culated from Eq. �7� and from the conditions used in the generation
of the signal in Fig. 1 �the correction for the incoherent gain of the
Hanning window is also included�. �c� Superposition of parts �a�
and �b�: we see that the calculated shape closely matches the
observed shape �b�.
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pling is negligible just at the modulation frequency, while
there should be two side-peaks whose exact shape depends
on the low-frequency limit of the 1/ f� region, i.e., on 
min.
And indeed this is just what happens in the simulations, as
shown in Fig. 3, where part �a� shows the region of the
averaged spectrum in Fig. 2�b� close to the peak due to sam-
pling time modulation. Figure 3�b� shows the expected be-
havior calculated from Eq. �7� and from the conditions used
in the generation of the noise process and listed above �the
correction for the incoherent gain of the Hanning window
�13� is also included�. Finally, Fig. 3�c� is the superposition
of Figs. 3�a� and 3�b�, where we see that the calculated shape
closely matches the observed shape.

Figure 4 shows the results of a similar calculation per-
formed on the spectrum of a single realization of the noise
process shown in Fig. 2�a�: Fig. 4�a� is the zoomed portion of
the spectrum around the modulation peak. Figure 4�b� is a
still closer zoom, and the arrow in the figure shows the po-
sition of the modulation frequency: notice that there is no
peak just where one would naively expect to find one. The
low frequency part of the spectrum in Fig. 2�a� has been
inserted in Eq. �7� to obtain the spectrum in Fig. 4�c�, and we
see that there is an almost perfect correspondence with the
peak in Fig. 4�c�: this means that the correlation terms be-
tween different frequencies �the cross terms in the derivation
of Eq. �7�� are negligible even for a single realization of the
noise process.

I have also noted that there must be a dependence of the
split-peak shape on the exact shape of the low-frequency part
of the spectrum: Fig. 5�a� shows the shape of the peak for a
larger value of 
min �
min=10−3�. In this case the low-
frequency part of the noise spectrum �9� has a wider 1 / f2

region, and the side-peaks must be correspondingly lower
and further apart: indeed this is just what happens in figure
5�a�. A further confirmation is provided by Fig. 5�b�, which

FIG. 4. �a� Spectrum of Fig. 2�a� zoomed and centered on the
position of the small peak �i.e., � /�S=� /2�, with linear scales on
both axes. �b� An even closer view of the peak shows that it is
actually a split peak: the arrow marks the position of the modulation
frequency. �c� This part shows what one obtains if one uses Eq. �7�
and the low-frequency part of the spectrum of Fig. 2�a� to calculate
the expected shape of the peak. The calculation includes the correc-
tion for the incoherent gain of the Hanning window that has been
used for trend removal. We see that the calculated shape �c� matches
the observed shape very well �b�.

FIG. 5. �Color online� This figure illustrates how the peak split-
ting changes for different noise shapes: �a� In this case the noise
generation parameters are the same as for the signal in Fig. 1, ex-
cept for the lowest relaxation rate 
min=0.001, and the figure shows
the averaged spectrum zoomed and centered on the position of the
small peak. The softer low-frequency behavior in noise spectrum
produces side peaks that are smaller and further apart than those
shown in Fig. 3. The solid line shows the expected behavior, calcu-
lated as in Fig. 3�b� �b� A smaller value of the lowest relaxation
rate, 
min=0.00005 yields instead much closer and higher side
peaks. Once again we see that the calculated shape �solid line�
matches very well the observed shape. Because of the much nar-
rower splitting, the scale in part �b� is expanded with respect to �a�
to improve visibility.
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shows the peak for a smaller value of 
min �
min=5�10−5�:
the side peaks are much higher and also closer.

Finally one may note that the dip right at the center of the
modulation peak is not as deep as expected, and sometimes it
is just missing: the foremost reason for this is that the Han-
ning window used for trend removal does not work well at
very low frequency. Indeed if the simulation record used for
the calculation contains, e.g., a large and long-lasting posi-
tive swing then it has a possibly large nonvanishing average.
This leads to a deviation from the expected behavior at very
low frequency which is well shown in the averaged spectrum
in Fig. 2�b�. This very deviation is also the source of the
diminished or missing dip right at the central frequency. In
addition, the still present, although reduced, spectral leakage
also contributes to wash out the delicate central dip.

IV. DISCUSSION

While most of the observed power-law �1/ f�� noises have
spectral indexes 0	��2, with an apparent clustering
around �=1, red noises, i.e., noises with spectral indexes
��2, also show up in several unrelated systems �15,16�
such as the water level of the Nile River, economics, orchid
population size �17� and local temperature fluctuations and
affect precise timekeeping �18� and our ability to predict en-
vironmental and animal population variables �19�. Noises
with ��2 also appear in the energy level fluctuations of

quantum systems �20,21� and in timing noise in pulsars �22�.
Because of their extreme peaking behavior at low frequen-
cies these noises are also called “black” �16�, and they dis-
play marked persistence properties �15� that may lead to the
mistaken identification of underlying trends in experimental
data �23�. From the results reported in this paper it follows
that these noises pose yet another potential danger to experi-
ments that use uneven sampling, because their long-memory
properties give rise to artifacts in the DFT spectra.

However Eq. �7� also shows that the single peak—in the
case of true 1/ f� noise—or the side peaks—in the case of
range-limited 1/ f� noise—can be modulated both in ampli-
tude and in frequency by modulating either the noise spec-
trum or the relative timing shift amplitude, or the repetition
index m: this means that uneven sampling of colored noise
could be utilized to encode information, and since an encod-
ing noise appears at first sight to be just ordinary noise, this
could be used to implement a secure communication channel
�there is a very rich literature on this topic, but here I give
only a reference to a classic book �24� and to a recent paper
�25��. A simple example of the kind of modulation that can
be achieved can be gleaned from Figs. 3–5: if one uses the
noise generator �9–11�, it is possible to modulate the shape of
the low-frequency part of the spectrum with a proper change
of 
min and in this way one modulates in turn both the am-
plitude and the position, i.e., the frequency, of the side peaks.
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